56 research outputs found

    Finite-time control for uncertain systems and application to flight control

    Get PDF
    In this paper, the finite-time control design problem for a class of nonlinear systems with matched and mismatched uncertainty is addressed. The finite-time control scheme is designed by integrating multi power reaching (MPR) law and finite-time disturbance observer (FTDO) into integral sliding mode control, where a novel sliding surface is designed, and the FTDO is applied to estimate the uncertainty. Then the fixed-time reachability of the MPR law is analyzed, and the finite-time stability of the closed-loop system is proven in the framework of Lyapunov stability theory. Finally, numerical simulation and the application to the flight control of hypersonic vehicle (HSV) are provided to show the effectiveness of the designed controller

    Preliminary Characterization of Underground Hydrological Processes under Multiple Rainfall Conditions and Rocky Desertification Degrees in Karst Regions of Southwest China

    Get PDF
    Karst regions are widely distributed in Southwest China and due to the complexity of their geologic structure, it is very challenging to collect data useful to provide a better understanding of surface, underground and fissure flows, needed to calibrate and validate numerical models. Without characterizing these features, it is very problematic to fully establish rainfall–runoff processes associated with soil loss in karst landscapes. Water infiltrated rapidly to the underground in rocky desertification areas. To fill this gap, this experimental work was completed to preliminarily determine the output characteristics of subsurface and underground fissure flows and their relationships with rainfall intensities (30 mm h−1, 60 mm h−1 and 90 mm h−1) and bedrock degrees (30%, 40% and 50%), as well as the role of underground fissure flow in the near-surface rainfall–runoff process. Results indicated that under light rainfall conditions (30 mm h−1), the hydrological processes observed were typical of Dunne overland flows; however, under moderate (60 mm h−1) and high rainfall conditions (90 mm h−1), hydrological processes were typical of Horton overland flows. Furthermore, results confirmed that the generation of underground runoff for moderate rocky desertification (MRD) and severe rocky desertification (SRD) happened 18.18% and 45.45% later than the timing recorded for the light rocky desertification (LRD) scenario. Additionally, results established that the maximum rate of underground runoff increased with the increase of bedrock degrees and the amount of cumulative underground runoff measured under different rocky desertification was SRD > MRD > LRD. In terms of flow characterization, for the LRD configuration under light rainfall intensity the underground runoff was mainly associated with soil water, which was accounting for about 85%–95%. However, under moderate and high rainfall intensities, the underground flow was mainly generated from fissure flow

    A Retrospective Analysis of the Clinical Features of Inpatients With Epilepsy in the Ganzi Tibetan Autonomous Prefecture

    Get PDF
    Background: There is limited detailed clinical information for patients with epilepsy in Tibet. This study sought to provide data about the clinical features of epilepsy in the Ganzi Tibetan Autonomous Prefecture to improve strategies for epilepsy prevention and management in this region.Methods: We reviewed the clinical record of patients with epilepsy in the Neurology Department, Ganzi Tibetan Autonomous Prefecture People's Hospital and compared the clinical features and compared it with control, from West China Hospital in Chengdu.Results: This retrospective study included 165 patients with epilepsy admitted between January 2015 and February 2018. Majority of patients (97%) in this study had active epilepsy; 28.5% had generalized onset seizures and 68.5% had focal onset seizures. Fifty-four patients had received anti-epileptic drug (AED) treatment prior to hospitalization, however, 38 (70.4%) patients took the medication irregularly. The leading etiology of this cohort was head trauma (20.6%), followed by stroke (10.9%), neurocysticercosis (7.9%), brain hydatidosis (6.7%) and tuberculous infection (5.5%). Compared with in-patients in Chengdu, epilepsy in Ganzi was more frequently caused by infection (OR = 4.216, 95% CI, 2.124–8.367), including neurocysticercosis (OR = 29.301, 95% CI, 1.727–497.167) and brain hydatidosis (OR = 24.637, 95% CI, 1.439–421.670).Conclusions: These data suggest that the control of cerebral infections, especially parasite infection, is essential for the prevention of epilepsy in the Ganzi Tibetan Autonomous Prefecture. Education of local primary doctors and patients about the literacy of epilepsy will enable better management of epilepsy in this population

    Similar Connotation in Chronic Hepatitis B and Nonalcoholic Fatty Liver Patients with Dampness-Heat Syndrome

    Get PDF
    The phenomenon that the same syndrome turns up in different diseases appears in the sight of people around the world, which raises the thought for possibility of “Same Treatment for Different Diseases.” Actually, treatment based on ZHENG classification in Traditional Chinese Medicine could bring revelation for the former finding. The dampness-heat syndrome in chronic hepatitis B and nonalcoholic fatty liver is regarded as the breakthrough point. We discussed the molecular mechanism of similar connotation that exists in chronic hepatitis B and nonalcoholic fatty liver by metabonomics to give the modern understanding of dampness-heat syndrome. Both urine and serum metabolic profiling revealed that obvious differences existed between dampness-heat syndrome and non-dampness-heat syndrome but the commonality was proved to appear in chronic hepatitis B and nonalcoholic fatty liver patients with dampness-heat syndrome. Furthermore, disorder of body fluid metabolism, decline in digestive capacity, and imbalance of intestinal flora were found to be the new guiding for treatment, with the hope to provide the basis for Chinese personalized medicine

    Gaussian Kernel Fuzzy C-Means Algorithm for Service Resource Allocation

    No full text
    With respect to the cluster problem of the evaluation information of mass customers in service management, a cluster algorithm of new Gaussian kernel FCM (fuzzy C-means) is proposed based on the idea of FCM. First, the paper defines a Euclidean distance formula between two data points and makes them cluster adaptively based on the distance classification approach and nearest neighbors in deleting relative data. Second, the defects of the FCM algorithm are analyzed, and a solution algorithm is designed based on the dual goals of obtaining a short distance between whole classes and long distances between different classes. Finally, an example is given to illustrate the results compared with the existing FCM algorithm

    Effects of Al3+ Substitution on Structural and Magnetic Behavior of CoFe2O4 Ferrite Nanomaterials

    No full text
    A sol-gel autocombustion method was used to synthesize Al3+ ion-substituted cobalt ferrite CoAlxFe2−xO4 (x = 0–1.5). According to X-ray diffraction analysis (XRD), cobalt ferrite was in a single cubic phase after being calcined at 1000 °C for 3 h. Moreover, the lattice constant decreased with increase in aluminum substituents. When the sample was analyzed by Scanning Electron Microscopy (SEM), we found that uniformly sized, well-crystallized grains were distributed in the sample. Furthermore, we confirmed that Al3+ ion-substituted cobalt ferrite underwent a transition from ferrimagnetic to superparamagnetic behavior; the superparamagnetic behavior was completely correlated with the increase in Al3+ ion concentration at room temperature. All these findings were observed in Mössbauer spectra. For the cobalt ferrite CoAlxFe2−xO4, the coercivity and saturation magnetization decrease with an increase in aluminum content. When the annealing temperature of CoAl0.1Fe1.9O4 was steadily increased, the coercivity and saturation magnetization initially increased and then decreased

    Magnetic and Mössbauer Spectroscopy Studies of Zinc-Substituted Cobalt Ferrites Prepared by the Sol-Gel Method

    No full text
    Zinc ion-substituted cobalt ferrite powders Co1−xZnxFe2O4 (x = 0–0.7) were prepared by the sol-gel auto-combustion process. The structural properties and magnetic of the samples were investigated with X-ray diffraction (XRD), superconducting quantum interference device, and a Mössbauer spectrometer. The results of XRD showed that the powder of a single cubic phase of ferrites calcined when kept at 800 °C for 3 h. The lattice constant increases with increase in Zn concentration, but average crystallite size does not decrease constantly by increasing the zinc content, which is related to pH value. It was confirmed that the transition from ferrimagnetic to superparamagnetic behaviour depends on increasing zinc concentration by Mössbauer spectra at room temperature. Magnetization at room temperature increases for x ≤ 0.3, but decreases for increasing Zn2+ ions. The magnetization of Co0.7Zn0.3Fe2O4 reached maximum value (83.51 emu/g). The coercivity decreased with Zn2+ ions, which were doped on account of the decrease of the anisotropy constant

    Effect of Mandrel on Cross-Section Quality in Numerical Control Bending Process of Stainless Steel 2169 Small Diameter Tube

    No full text
    The tube numerical control (NC) bending process is a much complex physical process with multifactors coupling interactive effects. The mandrel is the key to improve forming quality and to enhance forming limit. In this study, based on the platform of ABAQUS/Explicit, a 3D elastic-plastic finite element model of NC bending process of 2169 (0Cr21Ni6Mn9N) stainless steel tube was established, key technological problems were solved, and its reliability was validated. Then, simulation and analysis of the processes were carried out, and the influence laws of mandrel types and mandrel parameters on cross-section quality were obtained. The results show that the wall thinning or cross section deformation is serious at the middle part and small in the vicinity of the bending plane or initial bending plane; the wall thinning degree increases or the cross section deformation degree decreases with the increase of mandrel diameter or mandrel extension length; the effect of bulb mandrel on the cross section quality is more significant than that of cylinder mandrel. And the reasonable mandrel types and mandrel parameters are chosen for the 2169 high-pressure hydraulic tube with small diameter. The results may lead to better understanding of mandrel role in the improvement of forming quality and forming limit in the NC bending process
    corecore